![]() |
cacao
Release 0.1.03-dev
Compute And Control For Adaptive Optics
|
statistical tools module More...
#include <stdint.h>#include <math.h>#include <stdlib.h>#include <stdio.h>#include <string.h>#include <time.h>#include <gsl/gsl_randist.h>#include "CommandLineInterface/CLIcore.h"#include "00CORE/00CORE.h"#include "COREMOD_memory/COREMOD_memory.h"#include "statistic/statistic.h"
Data Structures | |
| struct | BIRCHCF |
Macros | |
| #define | MODULE_SHORTNAME_DEFAULT "" |
| #define | MODULE_DESCRIPTION "Statistics functions and tools" |
| #define | MODULE_APPLICATION "milk" |
Functions | |
CLI bindings | |
| errno_t | statistic_putphnoise_cli () |
| errno_t | statistic_putgaussnoise_cli () |
Module initialization | |
| static errno_t | init_module_CLI () |
STATISTIC functions | |
| double | ran1 () |
| Uniform distribution from 0 to 1. More... | |
| double | gauss () |
| Normal distribution, mean=0, sigma=1. More... | |
| double | gauss_trc () |
| truncated (-1/+1) sigma = 1 mean = 0 gaussian probability More... | |
| long | poisson (double mu) |
| Poisson distribution. More... | |
| double | cfits_gammaln (double xx) |
| double | fast_poisson (double mu) |
| double | better_poisson (double mu) |
| long | put_poisson_noise (const char *ID_in_name, const char *ID_out_name) |
| Apply Poisson noise to image. More... | |
| long | put_gauss_noise (const char *ID_in_name, const char *ID_out_name, double ampl) |
| Apply Gaussian noise to image. More... | |
| long | statistic_BIRCH_clustering (__attribute__((unused)) const char *IDin_name, __attribute__((unused)) int B, __attribute__((unused)) double epsilon, __attribute__((unused)) const char *IDout_name) |
statistical tools module
Random numbers, photon noise
| #define MODULE_APPLICATION "milk" |
| #define MODULE_DESCRIPTION "Statistics functions and tools" |
| #define MODULE_SHORTNAME_DEFAULT "" |
| double better_poisson | ( | double | mu | ) |
| double cfits_gammaln | ( | double | xx | ) |
| double fast_poisson | ( | double | mu | ) |
| double gauss | ( | ) |
Normal distribution, mean=0, sigma=1.
| double gauss_trc | ( | ) |
truncated (-1/+1) sigma = 1 mean = 0 gaussian probability
|
static |
| long poisson | ( | double | mu | ) |
Poisson distribution.
| mu | Distribution mean |
| long put_gauss_noise | ( | const char * | ID_in_name, |
| const char * | ID_out_name, | ||
| double | ampl | ||
| ) |
Apply Gaussian noise to image.
| long put_poisson_noise | ( | const char * | ID_in_name, |
| const char * | ID_out_name | ||
| ) |
Apply Poisson noise to image.
| double ran1 | ( | ) |
Uniform distribution from 0 to 1.
| long statistic_BIRCH_clustering | ( | __attribute__((unused)) const char * | IDin_name, |
| __attribute__((unused)) int | B, | ||
| __attribute__((unused)) double | epsilon, | ||
| __attribute__((unused)) const char * | IDout_name | ||
| ) |
Apply BIRCH clustering to images
Images input is 3D array, one image per slice
Euclidian distance adopted
B is the number of branches
epsilon is the maximum distance (Euclidian)
| errno_t statistic_putgaussnoise_cli | ( | ) |
| errno_t statistic_putphnoise_cli | ( | ) |